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Course Description:

Right from its introduction by Hamilton in 1982, the Ricci flow has found
applications in both geometry and topology. Perhaps the crowning achieve-
ment of the Ricci flow is the proof of the Poincaré conjecture or more gen-
erally the proof of the Thurston’s Geometrization conjecture by Perelman.
This course intends to be an introduction to the Ricci flow and to study
many of its properties and applications. A detailed (preliminary) discus-
sion of topics is outlined below. If the response will be good, then there
could also be a ”Part 2” of the course which probably will cover those
results of Perelman which won’t be covered in the first part.

Topics to be covered (the topics marked with * might be covered if there
is interest among the participants.)
(1) Basics of Riemannian geometry and Ricci calculus with emphasis on

calculations in local coordinates.
(2) Basics on Partial Differential Equations with a focus on parabolic PDEs;

existence of solutions to such PDEs.
(3) Introduction to the Ricci flow.
(4) Short time existence using the DeTurck’s trick.
(5) Evolution equations of intrinsic geometric quantities along the flow.
(6) Uhlenbeck’s trick: evolution of the Riemann curvature tensor; Hamil-

ton’s theorem on positivity of Riemann curvature being preserved.
(7) Curvature estimates and long time existence.
(8) Vector bundle maximum principles; curvature pinching estimates and

Hamilton–Ivey pinching estimate.
(9) Ricci flow in two dimensions. (Hamilton and Ivey’s results on all

compact Ricci solitons being gradient*)
(10) Li–Yau Harnack inequality and Hamilton’s Harnack estimates for the

Ricci flow. (Chow–Chu’s approach to Hamilton’s Harnack estimates
using the space-time approach*)

(11) Ricci solitons item Ricci flow as a gradient flow: Perelman’s F and W
functionals and their monotonicity.



2 (12) Perelman’s No Local Collapsing theorem (proof of Hamilton’s little
loop conjecture.)

(13) Logarithmic Sobolev inequalities.
(14) Overall idea of Perelman’s proof of the Thurston’s Geometrization

Conjecture.
The aforementioned topics are much more than what we’ll actually be able
to cover in the course.

Prerequisites:

The target audience is Bachelors and Masters’s students and PhD students
so only basic knowledge of Riemannian geometry and analysis (especially
PDEs) will be very beneficial.

Literature:

There are excellent introductions to the subject of the Ricci flow and the
materials presented in the class will be followed from the references men-
tioned below. In particular, [2], [1] and [10] are good sources for self-study
as well.
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Date and Place: Tue 10:15–11:45, SR 221, Sedanstr. 19

Problem Classes: Tue 12:15–13:45, SR 205, Sedanstr. 19

Starting on: 15 October 2024


